Для передачи электроэнергии на расстояние используют. Передача электроэнергии – распространенные способы и альтернативные варианты. Схема передачи электроэнергии

Строительство и ремонт

В настоящее время электроэнергия вырабатывается преимущественно мощными электростанциями, расположенными далеко от потребителей.

В результате этого возникает необходимость ее передачи на большие расстояния.

В принципе электромагнитную энергию можно передавать от источника к потребителю в диапазоне сверхвысоких частот (СВЧ) и в оптическом диапазоне частот. Именно в таком виде поступает на Землю электромагнитная энергия от Солнца. Спектр излучения Солнца постирается от крайне низких частот,порядка нескольких Герц, до ультрафиолетовых и даже рентгеновских частот. Однако при настоящем уровне развития техники передача больших количеств электроэнергии через свободное пространство практически затруднительна. Поэтому в настоящее время электроэнергия передается по открытым линиям передачи с помощью проводов из алюминия и меди или с помощью экранированных кабелей.

При этом в тех случаях, когда электрическая энергия вырабатывается на относительно низких частотах (50 или 60 Гц), экономически более выгодно передавать ее с помощью высоковольтных линий электропередачи. Как уже отмечалось, в этом случае электромагнитное поле распространяется в диэлектрике, окружающем металлический провод и только незначительная часть энергии проникает в провод и тратится на его нагревание. Для передачи электроэнергии на большие расстояния в настоящее время в основном используются проводящие каналы из металлических алюминиевых или медных проводов. При этом используются как открытые воздушные линии, так и экранированные подземные кабели. В обоих случаях электромагнитная энергия распространяется в диэлектрике, окружающий проводник и только незначительная часть ее (доли процента) теряется на нагрев проводника. При использовании открытых проводников некоторая часть передаваемой энергии излучается в свободное пространство.

Излучаемая в свободное пространство энергия незначительна (доли процента), если длина линии передачи значительно меньше половины длины волны.равной 6000 км при частоте 50 гц и практически линейно возрастает по мере увеличения длины линии передачи.

Как уже отмечалось выше, передача электроэнергии в настоящее время производится с использованием переменного напряжения. Это объясняется возможностью использования для изменения величины переменного напряжения трансформаторов.

Практически электромагнитное поле проникает в металл проводов на глубину несколько сот нанометров. В общем случае величина потерь в проводах зависит от мощности передаваемой электроэнергии, концентрации примесей в металле проводов и температуры. Естественно, чем сильнее нагревается провод,тем больше в нем потери.

Поэтому провода приходится выбирать тем толще, чем больше предаваемая по ним мощность и чем больше в металле проводов примесей. Окисление проводов в влажной среде, приводит к образованию на их поверхности пленки диэлектрика и также естественно увеличивает потери.

Серьезной проблемой при использовании открытых линий передачи на большие расстояние является возрастание потерь, вызванных увеличением излучения электроэнергии в свободное пространство.

Необходимо помнить, что при передаче электроэнергии на постоянном токе (при f =0 Гц), электромагнитное поле также распространяется вдоль проводов со скоростью близкой к скорости света. При этом резко уменьшаются потери энергии на излучение в свободное пространство. Потери энергии в проводах в этом случае практически не уменьшаются. Существенно можно их уменьшить при использовании сверхпроводников. Однако в настоящее время передача электроэнергии с использованием сверхпроводников практически не используется, главным образом из-за того, что их необходимо охлаждать до очень низкой температуры. При этом энергия, требующаяся на охлаждение проводников, превышает потери электроэнергии при передаче ее по экранированным проводам.

Ни для кого не секрет, что электричество в наш дом попадает от электростанций, являющихся основными источниками электроэнергии. Однако между нами (потребителями) и станцией может быть сотни километров и через все это дальнее расстояние ток должен каким-то образом передаваться с максимальным КПД. В этой статье мы, собственно, и рассмотрим, как передается электроэнергия на расстоянии к потребителям.

Маршрут транспортировки электричества

Итак, как мы уже сказали, начальной точкой является электрическая станция, которая, собственно, и генерирует электроэнергию. На сегодняшний день основными видами электростанций являются гидро- (ГЭС), тепло- (ТЭС) и атомные (АЭС). Помимо этого бывают солнечные, ветровые и геотермальные эл. станции.

Далее от источника электричество передается к потребителям, которые могут находиться на дальних расстояниях. Чтобы осуществить передачу электроэнергии, нужно повысить напряжение с помощью повышающих трансформаторов (напряжение могут повысить вплоть до 1150 кВ, в зависимости от расстояния).

Почему электроэнергия передается при повышенном напряжении? Все очень просто. Вспомним формулу электрической мощности — P=UI, тогда если передавать энергию к потребителю, то чем выше напряжение на линии электропередач — тем меньше ток в проводах, при той же потребляемой мощности. Благодаря этому можно строить ЛЭП с большим напряжением, уменьшив сечение проводов, по сравнению с ЛЭП с низшим напряжением. Значит и сократятся расходы на строительство — чем тоньше провода, тем они дешевле.

Соответственно от станции электричество передается на повышающий трансформатор (при необходимости), а после этого с помощью ЛЭП осуществляется передача электроэнергии на ЦРП (центрально распределительные подстанции). Последние, в свою очередь, находятся в городах или в близком расстоянии от них. На ЦРП происходит понижение напряжения до 220 или же 110 кВ, откуда электроэнергия передается к подстанциям.

Далее напряжение еще раз понижают (уже до 6-10 кВ) и происходит распределение электрической энергии по трансформаторным пунктам, именуемым также ТП. К трансформаторным пунктам электричество может передаваться не по ЛЭП, а подземной кабельной линией, т.к. в городских условиях это будет более целесообразно. Дело в том, что стоимость полосы отчуждения в городах достаточно высокая и более выгодно будет прокопать траншею и заложить кабель в ней, нежели занимать место на поверхности.

От трансформаторных пунктов электроэнергия передается к многоэтажным домам, постройкам частного сектора, гаражному кооперативу и т.д. Обращаем ваше внимание на то, что на ТП напряжение еще раз понижается, уже до привычных нам 0,4 кВ (сеть 380 вольт).

Если кратко рассмотреть маршрут передачи электроэнергии от источника к потребителям, то он выглядит следующим образом: электростанция (к примеру, 10 кВ) – повышающая трансформаторная подстанция (от 110 до 1150 кв) – ЛЭП – понижающая трансформаторная подстанция – ТП (10-0,4 кВ) – жилые дома.

Вот таким способом электричество передается по проводам в наш дом. Как вы видите, схема передачи и распределения электроэнергии к потребителям не слишком сложная, все зависит от того, насколько большое расстояние.

Наглядно увидеть, как электрическая энергия поступает в города и доходит до жилого сектора, вы можете на картинке ниже:

Более подробно об этом вопросе рассказывают эксперты:

Как электричество поступает от источника к потребителю

Что еще важно знать?

Также хотелось пару слов сказать о моментах, которые пересекаются с этим вопросом. Во-первых, уже достаточно долго проводятся исследования на тему того, как осуществить передачу электроэнергии без проводов. Существует множество идей, но самым перспективным на сегодняшний день решением является использование беспроводной технологии WI-Fi. Учёные из Вашингтонского университета выяснили, что этот способ вполне реален и приступили к более подробному исследованию вопроса.

Во-вторых, на сегодняшний день по ЛЭП передается переменный ток, а не постоянный. Это связано с тем, что преобразовательные устройства, которые сначала выпрямляют ток на входе, а потом снова делают его переменным на выходе, имеют достаточно высокую стоимость, что экономически не целесообразно. Однако все же пропускная способность линий электропередач постоянного тока в 2 раза выше, что также заставляет думать над тем, как ее более выгодно осуществить.

Вот мы и рассмотрели схему передачи электричества от источника к дому. Надеемся, вам стало понятно, как передается электроэнергия на расстоянии к потребителям и почему для этого используют высокое напряжение.

Главой задачей, которую решают энергетические комплексы можно считать передача потребителям электрической энергии через расстояние. По этой причине можно заметить специальные линии, которые идут от станций к пользователям. Чаще всего используют линии воздушного типа, по которым перемещается переменный ток. С помощью таких установок вырабатывается энергия, которая поставляется к более слабым потребителям. Была создана сильная структура разветвленного характера, для того чтобы охватить все сети с электрической энергией.

Основные характеристики: передача электрической энергии

Главный показатель, который характеризует передачу электричества – это пропускная способность. Она представлена в виде максимальной мощности перемещающейся по линиям даже в ограниченных условиях.

Сама схема передачи энергии включает в себя 3 компонента:

  • Повышающий трансформатор;
  • Высоковольтная линия передач;
  • Понижающий трансформатор.

Согласно этой схеме электричество передается от главного генератора к потребителю.

Что касается ограниченных условий, то здесь можно назвать определенные потери в процессе нагрева проводов, потери на коронах и другие факторы. Так же мощность передачи будет зависеть от того насколько протяжна ЛЭП и каким напряжением обладает ток. Что касается напряжения, то если ее мощность увеличивается, то и пропускные свойства становятся лучше, а вот с ЛЭП все немного сложнее, так как для повышения производительности нужно создать конструктивное улучшение или же устанавливать компенсирующее устройство.

Постоянная передача электроэнергии на расстояние

Пропускные способности линий электропередач с постоянным током намного выше. Но здесь следует учесть, что потребуются дорогие преобразовательные устройства. По этой причине такой тип передачи электроэнергии всегда выглядит предпочтительнее.


На конце, который передает переменный ток, вырабатывается напряжение с помощью генератора, в обычном случае оно составляет 25 кВ, после этого показатель можно увеличить до необходимого уровня. На конце линии электропередачи ток снова принимает состояние переменного, а после этого трансформаторы преобразуют напряжение в тот уровень, которое необходимо для потребителей.

Важным вопросом остается понижение потерь энергии в процессе передачи. Рассматривались способы, которые были основаны на зависимости проводов от температурного режима. Если температура провода будет составлять -209 градусов, то потери снизятся в 10 раз.

Вся суть заключается в том, что большинство металлов и сплавов, а так же интерметаллических соединений не способны активно проводить даже при комнатной температуре. Если же температура будет снижена до 0, то потери значительно уменьшаться.

К недостаткам таких линий электропередач можно отнести:

  • Из-за сильных электрических полей возникает вредное биологическое воздействие на окружающую среду;
  • Полоса отчуждения должна составлять около 1Га при протяженности 1 км.

Не смотря на положительные результаты методики понижения потерь, все способы не были реализованы в жизни, так как оборудование стоит больших затрат.

Передача электроэнергии на большие расстояния

Для того чтобы организовать передачу электрической энергии на большое расстояние чаще всего применяют специальные каналы из проводов сделанных из алюминия, металла или меди. Здесь могут быть организованы несколько типов линий.

А именно:

  • Линии воздушного типа;
  • Подземные кабели экранизированного вида.

И первый, и второй тип распространяет электромагнитную энергию в диэлектрике, и только доля процента теряется при нагреве проводника.

Если используется открытый проводник, то определенная часть энергии при передаче проходит в свободное пространство, и она не значительна. Это происходит в том случае, если линия передачи намного меньше длинны волны.

Как уже было сказано, в настоящее время передачу энергии осуществляют с помощью переменного напряжения. Это можно объяснить тем, что появляется возможность изменять величину напряжения в трансформаторах.

На практике электромагнитное поле распространяется по металлу в проводах на глубину, а общие потери будут зависеть от того сколько примесей ест в металле и от температуры провода. Чем больше будет нагреваться провод, тем больше потерь будет на выходе.

По какому маршруту происходит передача электроэнергии на расстояние

Уже ни для кого не станет секретом, что электроэнергия попадает в наше жилье от электрических станций, которые являются основным источником электрической энергии. Но между этими установками и нашими домами проходят сотни километров, и все это расстояние ток должен сохранить максимальный коэффициент полезного действия.

Итак, как уже было сказано, первоначальным пунктом является станция, которая проводит генерацию энергии.

На сегодняшний день можно выделит следующие станции:

  • ГЭС (гидроэлектростанция);
  • ТЭС (теплоэлектростанция);
  • АЭС (атомная электростанция);
  • Солнечная;
  • Ветровая;
  • Геотермальная.


Здесь от основного источника, то есть от станции, электричество передвигается к потребителям, которые могут располагаться на дальнем расстоянии. Для того чтобы передать напряжение, его повышают при помощи установленных трансформаторов. Напряжение может быть повышено до 1100 кВ, показатель будет зависеть от расстояния.

Электроэнергия должна передаваться под высоким напряжением. Дело в том, что в процессе повышения, сила тока будет уменьшена, как результат и сопротивление в проводах. Все эти действия необходимы для сокращения потерь мощности тока.

При передаче электроэнергии на большие расстояния от электростанции осуществляется распределение. Принцип не сложный его можно понять даже впервые взглянув на картинки – схемы. Вся передача зависит на каком расстоянии находится конечная точка и при каком напряжении она работает выгоднее. На последнем этапе, там где находятся структурные объекты, происходит получение постоянного тока в допустимом показателе

В соответствии с этим электроэнергия предается на трансформатор, который повышает показатель, после этого энергия передается на центральную распределительную подстанцию и здесь показатель снижается до потребляемого в 220 или 110 кВ. Именно отсюда происходит распределения на подстанции.

После этого напряжение снижается еще раз уже до показателя 6-10 кВ и направляется в трансформаторные пункты. От них электричество передается в жилые дома, многоэтажки, частные сектора и гаражи.

Если кратко описать схему передачи энергии, то она выглядит так:

  • Электростанция;
  • Повышающий трансформатор;
  • Понижающий трансформатор;
  • Жилой дом.

Передача тока осуществлена по этому маршруту, а все действие можно охарактеризовать как сообщение, которое передается одному объекту. Все показатели заносятся в определенный журнал.

Таким образом, электрическая энергия приходит в наш жилой дом. Схема передачи не очень сложная, и как мы убедились, все зависит от расстояния от исходной точки до потребителя.

Хотелось бы отметить тот факт, что на сегодняшний день является открытым и популярным вопросом передача электричества на расстояние без проводов. Идея было предложено много, но самым успешным вариантом можно считать беспроводную технологию, известную так, же как Wi-Fi. В Вашингтоне ученые уже рассмотрели этот метод и занялись его изучением более подробно.

Передача электроэнергии на расстояние с помощью резонансной однопроводной системы характеризуется низкими экономическими затратами по сравнению с традиционными технологиями. При этом, потери в проводах практически отсутствуют (в сотни раз меньше, чем при традиционном способе передачи электрической энергии). Значительно – до 10 раз снижаются затраты на прокладку кабелей. Обеспечивается высокий уровень электробезопасности для окружающей природной среды и человека.

Описание:

Одной из наиболее актуальных проблем современной энергетики является передача электроэнергии на расстояние с низкими экономическими затратами и обеспечение энергосбережения.

На практике для передачи электрической энергии на большие расстояния, как правило, используют трехфазные системы, для реализации которых требуется применение не менее 4 проводов , которой присуще следующие существенные недостатки:

большие потери электрической энергии в проводах, так называемые джоулевые потери,

необходимость использования промежуточных трансформаторных подстанций, компенсирующие потери энергии в проводах,

возникновение аварий вследствие короткого замыкания проводов, в том числе из-за опасных погодных явлений (сильный ветер, наледь на проводах и др.),

большой расход цветных металлов ,

большие экономические затраты на прокладку трехфазных электрических сетей (несколько миллионов рублей на 1 км).

Отмеченные выше недостатки могут быть устранены за счет применения резонансной однопроводной системы передачи электрической энергии, основанной на идеях Н. Теслы, доработанной с учетом современного развития науки и техники. В настоящее время технология резонансной однопроводной системы передачи электрической энергии получили свое развитие.

Резонансная однопроводная волноводная система передачи электрической энергии на повышенной частоте 1-100 кГц не использует активный ток проводимости в замкнутой цепи. В резонансной волноводной однопроводниковой линии нет замкнутого контура, нет бегущих волн тока и напряжения, а есть стоячие (стационарные) волны реактивного емкостного тока и напряжения со сдвигом фаз 90°. При этом из-за отсутствия активного тока и наличия узла тока в линии отпадает необходимость и потребность в создании в такой линии режима высокотемпературной проводимости, а джоулевы потери становятся незначительными в связи с отсутствием замкнутых активных токов проводимости в линии и незначительными величинами незамкнутого емкостного тока вблизи узлов стационарных волн тока в линии.

Предлагаемая технология основана на использовании двух резонансных контуров с частотой 0,5-50 кГц и однопроводной линии между контурами (см. Рисунок 1) с напряжением линии 1-100 кВ при работе в режиме резонанса напряжений.

Провод линии является направляющим каналом, вдоль которого движется электромагнитная энергия. Энергия электромагнитного поля распределена вокруг проводника линии.


Рис. 1. Электрическая схема резонансной однопроводной системы передачи электроэнергии

1 – генератор повышенной частоты; 2 – резонансный контур повышающего трансформатора; 3 – однопроводная линия; 4 – резонансный контур понижающего трансформатора; 5 – выпрямитель; 6 – преобразователь.

Как показывают расчеты и проведенные эксперименты при таком способе передачи электрической энергии, потери в проводах практически отсутствуют (в сотни раз меньше, чем при традиционном способе передачи электрической энергии) и данная технология безопасна для окружающей природной среды и человека.

Для согласования обычной системы электроснабжения с предлагаемой системой разработаны согласующие устройства и преобразователи , которые устанавливаются в начале и в конце однопроводной линии и позволяют использовать на входе и выходе стандартное электрооборудование переменного или постоянного тока.

В настоящее время отработана технология передачи электроэнергии мощностью до 100 кВт. Передача электроэнергии большей мощности требует применение электронных приборов (транзисторов, тиристоров, диодов и др.) повышенной мощности и надежности. Необходимо проведение дополнительных исследований для решения задачи энергообеспечения объектов, потребляющих электроэнергию мощностью свыше 100 кВт.

Преимущества:

– электрическая энергия передается с помощью реактивного емкостного тока в резонансном режиме,

несанкционированное использование энергии затруднено,

– снижение расходов на строительство ЛЭП,

возможность замены воздушных ЛЭП на однопроводниковые кабельные линии,

– существенная экономия цветных металлов, т.к. сечение кабеля в 3-5 раз меньше сечений традиционной трехфазной системы передачи электроэнергии, содержание алюминия и меди в проводах может быть снижено в 10 раз,

значительное уменьшение радиуса поворота линий, что является весьма важным при прокладке кабелей в городских условиях,

– значительное (до 10 раз) снижение затрат на прокладку кабелей,

отсутствует межфазное короткое замыкание,

– обеспечивается высокий уровень электробезопасности для окружающей природной среды и человека,

потери электроэнергии в однопроводной линии малы,

– электроэнергию можно передавать на большие и сверхдальние расстояния,

в однопроводном кабеле невозможны короткие замыкания и однопроводный кабель не может быть причиной пожара,

– отсутствие необходимости в техническом обслуживании,

наличие пониженного магнитного поля,

– отсутствие влияния погодных условий,

не нарушается естественный природный ландшафт,

– отсутствие полосы отчуждения,

потери в проводах практически отсутствуют (в сотни раз меньше, чем при традиционном способе передачи электрической энергии).

как осуществляется передача электроэнергии на большие расстояния
при передаче электроэнергии на большое расстояние используют
беспроводная передача электроэнергии на расстоянии
передача электроэнергии на большие расстояния без проводов видео
передача электроэнергии на расстояние история презентация реферат сообщение
потери электроэнергии при передаче на большие расстояния
презентация передача электроэнергии на расстояние трансформаторы
схема проблемы принципы передачи электроэнергии на большие дальние расстояния
производство и передача электроэнергии на расстоянии
реферат на тему передача электроэнергии на расстоянии
схема способы передачи электроэнергии на расстояние
трансформаторы передача электроэнергии на расстоянии
передача электроэнергии на расстояние с помощью резонансной однопроводной системы без проводов трансформатор производство и распределение потери тюменьэнергосбыт услуги тарифы тнс энерго вологдаэнергосбыт потребителям по лицевому счету личный кабинет акт сеть красноярскэнергосбыт через интернет линии красноярскэнергосбыт энергосбыт схема телефон физика оказание услуг срок организации

Коэффициент востребованности 458

Опросы

Нужна ли нашей стране индустриализация?

  • Да, нужна (90%, 2 486 голос(ов))
  • Нет, не нужна (6%, 178 голос(ов))
  • Не знаю (4%, 77 голос(ов))

Поиск технологий

Найдено технологий 1

Может быть интересно:

  • >> Передача электроэнергии

    § 40 ПЕРЕДАЧА ЭЛЕКТРОЭНЕРГИИ

    Потребители электроэнергии имеются повсюду. Производится же она в сравнительно немногих местах, близких к источникам топливо- и гидроресурсов. Электроэнергию не удается консервировать в болыпих масштабах. Она должна быть потреблена сразу же после получения. Поэтому возникает необходимость в передаче электроэнергии на большие расстояния.

    Передача электроэнергии связана с заметными потерями, так как электрический ток нагревает провода линий электропередачи. В соответствии с законом Джоуля - Ленца энергия, расходуемая на нагрев проводов линии, определяется формулой

    где R - сопротивление линии, U - передаваемое напряжение, Р - мощность источника тока.

    При очень большой длине линии передача энергии может стать экономически невыгодной. Значительно снизить сопротивление линии R практически весьма трудно. Поэтому приходится уменьшать силу тока I.

    Так как мощность источника тока Р равна произведению силы тока I на напряжение U, то для уменьшения передаваемой мощности нужно повысить передаваемое напряжение в линии передачи.

    Поэтому на крупных электростанциях устанавливают повышающие трансформаторы. Трансформатор увеличивает напряжение в линии во столько же раз, во сколько раз уменьшает силу тока.

    Чем длиннее линия передачи, тем выгоднее использовать более высокое напряжение. Так, в высоковольтной./гинии передачи Волжская ГЭС - Москва и некоторых других используют напряжение 500 кВ. Между тем генера-горы переменного тока настраивают на напряжения, не преиьгшающие 16-20 кВ. Более высокое напряжение потребовало бы принятия сложных специальных мер для и полиции обмоток и других частей генераторов.

    Для непосредственного использования электроэнергии в двнез гелях электропривода станков, в осветительной сети и для других целей напряжение на концах линии нужно понизить.

    Это достигается с помощью понижающих трансформаторов . Общая схема передачи энергии и ее распределения показана на рисунке 5.7.

    Обычно понижение напряжения и соответственно увеличение силы тока осуществляются в несколько этапов. На каждом этапе напряжение становится все меньше, а территория, охватываемая электрической сетью, - все шире.

    При очень высоком напряжении между проводами может начаться разряд, приводящий к потерям энергии. Допустимая амплитуда переменного напряжения должна быть такой, чтобы при заданной площади поперечного сечения провода потери энергии вследствие разряда были незначительными.

    Электрические станции ряда районов страны объединены высоковольтными линиями электропередачи, образуя общую электрическую сеть, к которой подключены потребители. Такое объединение, называемое энергосистемой, дает возможность сгладить пиковые нагрузки потребления энергии в утренние и вечерние часы. Энергосистема обеспечивает бесперебойность подачи энергии потребителям вне зависимости от места их расположения. Сейчас почти вся территория нашей страны обеспечивается электроэнергией объединенными энергетическими системами. Действует Единая энергетическая система европейской части страны.

    Передача электроэнергии на большие расстояния с малыми потерями - сложная задача. Использование электрического тока высокого напряжения помогает успешно разрешить ее.

    1. Как осуществляется передача электроэнергии на большие расстояния!
    2. В чем преимущества передачи энергии на большие расстояния при использовании постоянного тока!

    Мякишев Г. Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.

    Полный перечень тем по классам, календарный план согласно школьной программе по физике онлайн , видеоматериал по физике для 11 класса скачать

    Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки